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1 Introduction

Below are my notes for the course 21-690: Methods of Optimization taught
in the Spring 2025 semester by Professor Nicholas Boffi at Carnegie Mellon
University.

2 Convex Sets

2.1 Affine and Convex Sets

Definition (Affine). A set C ⊆ Rn is said to be affine if for all x, y ∈ C, we
have that θx+ (1− θ)y ∈ C for all θ ∈ R.
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Geometrically, affine sets are sets in which the line formed by any two points
in the set is entirely contained in the set as well.

Definition (Affine Combination). An affine combination of {xi}ki=1 ⊆ Rn

is a linear combination

k∑
i=1

θixi

where θi ∈ R for all i ∈ [k] and
∑k

i=1 θi = 1.

Proposition. Let C ⊆ Rn be an affine set. Then, any affine combination of
{xi}ki=1 ⊆ C is contained in C.

Proof. By induction on k.

Definition (Affine Hull). The affine hull of a set C ⊆ Rn is the set

aff(C) = {θx+ (1− θ)y : x, y ∈ C, θ ∈ R}.

Exercise. Prove that the affine hull of C ⊆ Rn is the smallest affine set
containing C.

Affine sets are certainly unbounded, as lines are unbounded. We can consider
bounded sets by considering only line segments rather than entire lines. Thus
lies the idea behind convexity.

Definition (Convex). A set C ⊆ Rn is said to be convex if for all x, y ∈ C,
we have that θx+ (1− θ)y ∈ C for all θ ∈ [0, 1].

Geometrically, convex sets are sets in which the line segment formed by any
two points in the set is entirely contained in the set as well. Note that we
only consider line segments by restricting our coefficients to [0, 1].

We can similarly extend the idea of affine combinations and affine hulls to
convexity.

Definition (Convex Combination). A convex combination of {xi}ki=1 ⊆ Rn

is a linear combination

k∑
i=1

θixi
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where θi ∈ [0, 1] for all i ∈ [k] and
∑k

i=1 θi = 1.

Proposition. Let C ⊆ Rn be a convex set. Then, any convex combination
of {xi}ki=1 ⊆ C is contained in C.

Proof. By induction on k.

Definition (Convex Hull). The convex hull of a set C ⊆ Rn is the set

conv(C) = {θx+ (1− θ)y : x, y ∈ C, θ ∈ [0, 1]}.

Exercise. Prove that the convex hull of C ⊆ Rn is the smallest convex set
containing C.

2.2 Examples

2.2.1 Cones

Definition (Cone). A set C is a cone if for all x ∈ C, λx ∈ C for all λ ≥ 0.

The traditional image of a "cone" is itself a cone, if extended to infinity.

Not all cones are convex: the union of two different lines is a cone, but not
convex.

2.2.2 Hyperplanes and Halfspaces

Definition (Hyperplane). Let a ∈ Rn and b ∈ R. The set

{x ∈ Rn : aTx = b}

is a hyperplane.

Geometrically, hyperplanes are lines in R2 and planes in R3.

Proposition. All hyperplanes are affine.

Proof. Consider the hyperplane

S = {x ∈ Rn : aTx = b}.

Consider x, y ∈ S and θ ∈ R. Then,

aT (θx+ (1− θ)y) = θ(aTx) + (1− θ)(aT y) = θb+ (1− θ)b = b.
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Hence, θx+ (1− θ)y ∈ S and so S is affine.

Definition (Halfspace). Let a ∈ Rn and b ∈ R. The set

{x ∈ Rn : aTx ≤ b}

is a halfspace.

Geometrically, halfspaces are one side of a hyperplane.

Proposition. All halfspaces are convex.

2.2.3 Balls and Ellipsoids

Definition (Ball). A ball is a set

B(xc, r) = {x ∈ Rn : ||x− xc|| ≤ r},

where r > 0.

Proposition. All balls are convex.

Proof. Consider some ball B(xc, r). Take x, y ∈ B(xc, r) and θ ∈ [0, 1]. Let
z = θx + (1 − θ)y. We wish to show that z ∈ B(xc, r). Observe that by
triangle inequality,

||z − xc|| = ||θx+ (1− θ)y − xc|| ≤ ||θx− θxc||+ ||(1− θ)y − (1− θxc)|| ≤ θr + (1− θ)r = r,

hence z ∈ B(xc, r).

Definition (Ellipsoid). An ellipsoid is a set

{x ∈ Rn : (x− xc)
TP−1(x− xc) ≤ 1}

where xc ∈ Rn and P ∈ Sn
++.

Proposition. All ellipsoids are convex.

Proof. Consider some ellipsoid

C = {x ∈ Rn : (x− xc)
TP−1(x− xc) ≤ 1}.
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Take x, y ∈ C, and θ ∈ [0, 1]. Let z = θx+ (1− θ)y. We wish to show that
z ∈ C. Observe that

(z − xc)
TP−1(z − xc)

= (θx+ (1− θ)y − xc)
TP−1(θx+ (1− θ)y − xc)

= (θx+ (1− θ)y − θxc − (1− θ)xc)
TP−1(θx+ (1− θ)y − θxc − (1− θ)xc)

= (θ(x− xc) + (1− θ)(y − xc))
TP−1(θ(x− xc) + (1− θ)(y − xc))

= θ2(x− xc)
TP−1(x− xc) + θ(1− θ)((x− xc)

TP−1(y − xc) + (y − xc)
TP−1(x− xc))

+ (1− θ)2(y − xc)
TP−1(y − xc)

= θ2(x− xc)
TP−1(x− xc) + 2θ(1− θ)(x− xc)

TP−1(y − xc) + (1− θ)2(y − xc)
TP−1(y − xc)

≤ θ2(x− xc)
TP−1(x− xc) + 2θ(1− θ)

√
(x− xc)TP−1(x− xc)

√
(y − xc)TP−1(y − xc)

+ (1− θ)2(y − xc)
TP−1(y − xc)

=

(
θ
√
(x− xc)TP−1(x− xc) + (1− θ)

√
(y − xc)TP−1(y − xc)

)2

≤ (θ + (1− θ))2

= 1.

Hence, z ∈ C, and so all ellipsoids are convex.

2.2.4 Polyhedra

Definition (Polyhedra). A polyhedra is a set

P = {x ∈ Rn :
(
∀i ∈ [m], aTi x ≤ bi

)
∧
(
∀i ∈ [p], cTi x = di

)
}.

Polyhedra are typically presented with the notation

P = {x ∈ Rn : Ax ⪯ b, Cx = d}

where A ∈ Rm×n, b ∈ Rm, C ∈ Rp×n, d ∈ Rp.

Geometrically, polyhedra are the intersection of a finite number of hyper-
planes and halfspaces.
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2.3 Operations that Preserve Convexity

2.3.1 Intersection

Proposition. Intersection preserves convexity.

Proof. Let I be an index set such that for all i, Ci ⊆ Rn is a convex set.
Let C =

⋂
i∈I Ci. We claim that C is convex.

Consider x, y ∈ C, and θ ∈ [0, 1]. Set z = θx+ (1− θ)y. It suffices to show
that z ∈ C.

By definition of C, x, y ∈ Ci for all i ∈ I. By convexity of Ci, we have that
z ∈ Ci for all i ∈ I. Hence, z ∈ C, as desired.

Exercise. The positive semidefinite cone, Sn
+, is convex.

Solution. Observe that

Sn
+ =

⋂
z∈Rn

{X ∈ Rn×n : zTXz ≥ 0}.

Every set on the right hand side is convex. The intersection of convex sets
is convex, hence the positive semidefinite cone is convex.

2.3.2 Affine Functions

Definition (Affine Function). A function f : Rn → Rm is affine if it is of
the form

f(x) = Ax+ b.

Proposition. The image of a convex set over an affine function is convex.

Proof. Let C ⊆ Rn be a convex set and f : Rn → Rm an affine function via
f(x) = Ax+ b. We wish to show that f [C] is convex.

Consider x, y ∈ f [C], and θ ∈ [0, 1]. Define z = θx+ (1− θ)y. It suffices to
show that z ∈ f [C].

As x, y ∈ f [C], there exists s, t ∈ C such that f(s) = x and f(t) = y.

Let u = θs+ (1− θ)t. As C is convex, we have that u ∈ C.

Thus,
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z = θx+ (1− θ)y

= θf(s) + (1− θ)f(t)

= θAs+ θb+ (1− θ)At+ (1− θ)b

= A(θs+ (1− θ)t) + b

= Au+ b

= f(u) ∈ f [C],

as desired.

The above proposition implies that scaling, translation, and projection pre-
serve convexity.

Proposition. The pre-image of a convex set over an affine function is con-
vex.

Proof. Let C ⊆ Rm be a convex set and f : Rn → Rm an affine function
via f(x) = Ax+ b. We wish to show that f−1[C] is convex.

Consider x, y ∈ f−1[C], and θ ∈ [0, 1]. It suffices to show that z = θx+ (1−
θ)y ∈ f−1[C], which in turn we must show that f(z) ∈ C.

Observe that

f(z) = f (θx+ (1− θ)y))

= θAx+ θb+ (1− θ)Ay + (1− θ)b

= θf(x) + (1− θ)f(y) ∈ C

by convexity of C.

2.3.3 Perspective Function

Definition (Perspective Function). The perspective function P : Rn ×
R++ → Rn is defined via

P (s, t) =
s

t
.

Proposition. The image of a convex set over the perspective function is
convex.
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Proof. Let C ⊆ Rn × R++ be a convex set. We wish to show that P [C] is
convex.

Consider x, y ∈ P [C]. We wish to show that for any θ ∈ [0, 1], θx+(1−θ)y ∈
P [C]. The proof is difficult if done directly, hence we will take a slightly
different approach.

Fix θ ∈ [0, 1]. Since x, y ∈ P [C], there exists (a, s), (b, t) ∈ C such that
P (a, c) = x and P (b, t) = y.

By convexity of C, we have that

(θa+ (1− θ)b, θs+ (1− θ)t) = θ(a, s) + (1− θ)(b, t) ∈ C.

Hence,

θsP (x)

θs+ (1− θ)t
+
(1− θ)tP (y)

θs+ (1− θ)t
=

θa+ (1− θ)b

θs+ (1− θ)t
= P (θa+(1−θ)b, θs+(1−θ)t) ∈ P [C]

Let

µ =
θs

θs+ (1− θ)t
.

Through substitution, we have that

µP (x) + (1− µ)P (y) ∈ P [C].

As we vary θ ∈ [0, 1], µ varies from 0 to 1, implying that P [C] is convex.

Proposition. The pre-image of a convex set over the perspective function
is convex.

Proof. Let C ⊆ Rn be a convex set. We wish to show that P−1[C] is convex.

Consider (x, s), (y, t) ∈ P−1[C], and θ ∈ [0, 1]. It suffices to show that
z = θ(x, s) + (1− θ)(y, t) ∈ P−1[C]. Thus, we wish to show that P (z) ∈ C.

Observe that

9



P (z) = P (θ(x, s) + (1− θ)(y, t))

= P (θx+ (1− θ)y, θs+ (1− θ)t)

=
θx+ (1− θ)y

θs+ (1− θ)t

=
θs

θs+ (1− θ)t
P (x, s) +

(1− θ)t

θs+ (1− θ)t
P (y, t).

Then, note that P (x, s), P (y, t) ∈ C, and

θs

θs+ (1− θ)t
,

(1− θ)t

θs+ (1− θ)t
∈ [0, 1].

Hence, by convexity of C,

P (z) =
θs

θs+ (1− θ)t
P (x, s) +

(1− θ)t

θs+ (1− θ)t
P (y, t) ∈ C,

implying that z ∈ P−1[C].

2.4 Separating Hyperplanes

Theorem (Separating Hyperplane). Two non-empty and disjoint convex
sets can be separated by a hyperplane.

Formally, if there are non-empty and disjoint convex sets C,D ⊆ Rn, there
exists a ∈ Rn, b ∈ Rn such that

∀x ∈ C, aTx ≤ b ∀x ∈ D, aTx ≥ b.

Geometrically, there exists a hyperplane between C and D.

Proof. We only prove the theorem for the special case in which C,D are
closed and bounded, hence compact.

Note that C × D is then compact. We may define the distance function
D : C × D → R via D(x, y) = ||x − y||. By compactness, there exists
u, v ∈ C,D such that D(u, v) = ||u− v|| is minimized.

Define a = v − u and b = (v − u)T (v + u)/2. We claim that the hyperplane
{aTx = b} separates C,D.
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Assume for the sake of contradiction not. Then, without loss of generality,
there exists x ∈ D such that aTx < b. Implying that

aTx < b

⇐⇒ (v − u)Tx− (v − u)T (v + u)

2
< 0

⇐⇒ (v − u)T
(
x− v + u

2

)
< 0

⇐⇒ (v − u)T
(
x+

−v − u

2

)
< 0

⇐⇒ (v − u)T
(
x+

v − u

2
− v

)
< 0

⇐⇒ (v − u)T (x− v) + ||v − u||/2 < 0.

Clearly, ||v − u|| > 0, meaning that (v − u)T (x− v) < 0.

Intuitively, we can move v towards the direction x − v and minimize the
distance from u.

Formally, we can take the derivative

d

dt
||(v + t(x− v))− u||2

∣∣∣
t=0

= 2(v − u)T (x− v) < 0

per the above.

Thus, for some small t > 0, we have that

||(v + t(x− v))− u|| < ||v − u||.

By convexity of D, v + t(x − v) = (1 − t)v + tx ∈ D, hence the above is a
contradiction by definition of u, v.

Definition. We say that two convex sets C,D ⊆ Rn are strictly separated
if there exists a ∈ Rn, b ∈ R such that

∀x ∈ C, aTx < b ∀x ∈ D, aTx > b.

Example. Let C ⊆ Rn be a closed convex set and x0 ∈ Rn a point not in
C. Then, C and {x0} are strictly separated.
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To see why, note that as C is closed, Rn\C is open. Hence, we can find r > 0
such that B(x0, r) ∩ C = ∅. Clearly, B(x0, r) is convex. By the separating
hyperplane theorem, we may find a ∈ Rn, b ∈ R such that aTx ≤ b for all
x ∈ C, and atx ≥ b for all x ∈ B(x0, r). In particular, the last statement
means that for any u ∈ Rn where ||u|| ≤ r,

aTx0 + aTu = aT (x0 + u) ≥ b.

The left hand side is minimized when u = − a
r||a|| , hence

aTx0 − r ≥ b =⇒ aTx0 ≥ b+ r > b.

Thus, the hyperplane strictly separates C and {x0}.

We can use this result to show the following.

Proposition. Let C ⊆ Rn be a closed convex set, and H be the set of all
halfspaces that contain C entirely. Then,

C =
⋂

H.

Proof.

C ⊆
⋂
H

Trivial by definition of H.⋂
H ⊆ C

Take x ∈
⋂
H. Assume for the sake of contradiction that x /∈ C. Then, we

may find a strictly separating hyperplane between {x} and C. Implying that
x /∈

⋂
H, a contradiction.

2.5 Supporting Hyperplanes

Definition. For a convex set C ⊆ Rn, we say that a hyperplane

{x ∈ Rn : aTx = aTx0}

is a supporting hyperplane if x0 ∈ ∂C and aTx ≤ aTx0 for all x ∈ C.
Geometrically, the hyperplane is tangent to a point on the boundary of C,
and its halfspace contains the entirety of C.
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3 Convex Functions

3.1 Basic Properties and Definitions

Definition. A function f : Rn → R is convex if for all x, y ∈ f , θ ∈ [0, 1],
we have that

f(θx+ (1− θ)y) ≤ θf(x) + (1− θ)f(y).

If the inequality is strict, i.e.

f(θx+ (1− θ)y) < θf(x) + (1− θ)f(y),

for x ̸= y, then the function is said to be strictly convex.

Intuitively, convex functions are those in which the epigraph of the function
(the area above the function) is a convex set.

Remark. A function f : Rn → R is convex if and only if it is convex when
restricted to any line in its domain, i.e. for all v ∈ Rn,

g(t) = f(x+ tv)

is convex.

Theorem (First Order Characterization). A function f : Rn → R in C1 is
convex if and only if

f(y) ≥ f(x) +∇f(x)T (y − x)

for all x, y ∈ Rn.

Proof.

Case: n = 1

First assume that f is convex. Then for any x, y ∈ R, we have that
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f(x+ θ(y − x)) ≤ (1− θ)f(x) + θf(y)

=⇒ f(x+ θ(y − x)) ≤ f(x)− θf(x) + θf(y)

=⇒ f(x) +
f(x+ θ(y − x))− f(x)

θ
≤ f(y)

=⇒ lim
θ→0

f(x) +
f(x+ θ(y − x))− f(x)

θ
≤ f(y)

=⇒ f(x) + lim
θ→0

f(x+ θ(y − x))− f(x)

θ
≤ f(y)

=⇒ f(x) + (y − x) lim
θ→0

f(x+ θ(y − x))− f(x)

θ(y − x)
≤ f(y)

=⇒ f(x) + f ′(x)(y − x) ≤ f(y).

as desired.

Now instead assume that for all x, y ∈ R,

f(x) + f ′(x)(y − x) ≤ f(y).

We wish to show that f is convex. Fix x, y ∈ R and θ ∈ [0, 1]. Let z =
θx+ (1− θ)y. Then,

f(z) + f ′(z)(x− z) ≤ f(x)

=⇒ f(z) + (1− θ)f ′(z)(x− y) ≤ f(x).

Similarly, we can see that

f(z) + θf ′(z)(y − x) ≤ f(y).

Combining these,

f(z) = θf(z) + (1− θ)f(z) ≤ θf(x) + (1− θ)f(y),

as desired.

Case: n > 1
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We can study the one-dimensional function which varies x in the direction
of y − x, i.e. g(t) = f(x + t(y − x)). The result then follows by the n = 1
case.

Remark. The above inequality is strict if and only if the function is strictly
convex.

Corollary. Let f : Rn → R be a convex function, and x ∈ Rn a point such
that ∇f(x) = 0. Then, x is a global minimizer of f .

Proof. Consider some y ∈ Rn. Per the first order characterization of convex
functions,

f(x) = f(x) +∇f(x)T (y − x) ≤ f(y).

Theorem (Second Order Characterization). A function f : dom(f) → R in
C2 is convex if and only if

∇2f(x) ⪰ 0

for all x ∈ dom(f).

Proof.

First assume that f is convex. Assume for the sake of contradiction that there
exists some x ∈ dom(f) such that ∇2f(x) is not positive semi-definite. By
definition, there exists some eigenvector v ∈ Rn such that ∇2f(x)v = λv
where λ < 0.

Define g(t) = f(x+ tv). Note that

g′′(t) = vT∇2f(x+ tv)v.

Hence,

g′′(0) = vT∇2f(x)v = vTλv = λ||v||2 < 0.

By definition of the second derivative, for some small ϵ > 0, g′(c) < g′(0) for
all c ∈ (0, ϵ).

Then,
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g(ϵ) = g(0) + (g(ϵ)− g(0)) = g(0) + g′(c)ϵ < g(0) + g′(0)ϵ,

by the mean value theorem. Hence, a contradiction since g inherits convexity
from f and the above violates the first order characterization of convexity.
Thus, ∇2f(x) ⪰ 0 for all x ∈ dom(f).

Now assume that ∇2f(x) ⪰ 0 for all x ∈ dom(f). We claim that f is convex.

Fix x, y ∈ dom(f). Define

g(t) = f(x+ t(y − x)).

Then,

f(y) = g(1) = g(0)+(g(1)−g(0)) = g(0)+g′(c) ≥ g(0)+g′(0) = f(x)+∇f(x)T (y−x)

by mean value theorem. The inequality follows from the fact that g′′ is
always non-negative, implying that g′ is non-decreasing.

Since x, y are arbitrary, we have that f is convex by the first order charac-
terization of convexity.

Remark. The above inequality is strict if and only if the function is strictly
convex.

3.2 Operations that Preserve Convexity

3.2.1 Nonnegative Weighted Sum

Proposition. Let {fi}ni=1 be a sequence of convex functions. Then,

n∑
i=1

ωifi, ωi ≥ 0

is convex.

Proof. Fix x, y ∈ Rn and θ ∈ [0, 1]. Then,
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(
n∑

i=1

ωifi

)
(θx+ (1− θy)) =

n∑
i=1

ωifi(θx+ (1− θ)y)

≤
n∑

i=1

ωi (θfi(x) + (1− θ)fi(y))

= θ

(
n∑

i=1

ωifi(x)

)
+ (1− θ)

(
n∑

i=1

ωifi(y)

)

= θ

(
n∑

i=1

ωifi)

)
(x) + (1− θ)

(
n∑

i=1

ωifi

)
(y)

as desired.

Remark. The above proposition generalizes to infinite sums (if they con-
verge) as well as integrals. Specifically, if a function f(x, y) is convex in x
for all y ∈ A, then

g(x) =

∫
A
ω(y)f(x, y)dy, ω(y) ≥ 0

is convex.

3.2.2 Affine Composition

Proposition. Let f : Rn → R, A ∈ Rn×m, and b ∈ Rn. Then,

g(x) = f (Ax+ b)

is convex if f is convex.

Proof. Fix x, y ∈ Rn and θ ∈ [0, 1]. Then,

g (θx+ (1− θ)y) = f (A (θx+ (1− θ)y) + b)

= f (θ(Ax+ b) + (1− θ)(Ay + b))

≤ θf(Ax+ b) + (1− θ)f(Ay + b)

= θg(x) + (1− θ)g(y).

17



3.2.3 Maximum and Supremum

Proposition. Let {fi}ni=1 be a sequence of convex functions. Then,

g(x) = max
i

fi(x)

is convex.

Proof. Fix x, y ∈ Rn and θ ∈ [0, 1]. Then,

g (θx+ (1− θ)y) = max
i

fi (θx+ (1− θ)y)

≤ max
i

(θfi(x) + (1− θ)fi(y))

≤ θmax
i

fi(x) + (1− θ)max
i

fi(y)

= θg(x) + (1− θ)g(y).

Remark. The above proposition generalizes to the supremum. Specifically,
if f(x, y) is convex in x for all y, then

g(x) = sup
y

f(x, y)

is convex.

3.2.4 Representation as Supremum of Affine Functions

Proposition. Let f : Rn → R be a convex function. Then,

f(x) = sup{g(x) : g affine, g(y) ≤ f(y) ∀y ∈ Rn}.

Proof.

f(x) ≤ sup{g(x) : g affine, g(y) ≤ f(y) ∀y ∈ Rn}

Define

epi(f) = {(x, y) : f(x) ≤ y}.

We claim that epi(f) is convex. Fix (x1, y1), (x2, y2) ∈ epi(f), and θ ∈ [0, 1].
Then let z = θ(x1, y1) + (1− θ)(x2, y2). So,
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z = (θx1 + (1− θ)x2, θy1 + (1− θ)y2).

By convexity of f ,

f(θx1 + (1− θ)x2) ≤ θf(x1) + (1− θ)f(x2) ≤ θy1 + (1− θ)y2

implying that z ∈ epi(f), as desired. Hence, epi(f) is convex.

Now fix some x ∈ Rn. We shall show that indeed,

f(x) ≤ sup{g(x) : g affine, g(y) ≤ f(y) ∀y ∈ Rn}.

Observe that (x, f(x)) ∈ ∂epi(f(x)), hence we may find a ∈ Rn, b ∈ R such
that

[
a
b

] [
x− z

f(x)− t

]
≤ 0

for all (z, t) ∈ epi(f).

Then,

aT (x− z) + b(f(x)− z) ≤ 0

=⇒ aT (x− z) + b(f(x)− f(z)− s) ≤ 0

for all s. Implying that b > 0.

We can then write the above as

g(z) =
aT

b
(x− z) + f(x) ≤ f(z)

for all z ∈ Rn.

Hence, g is an affine function that underestimates f over all z, and achieves
g(x) = f(x). We thus have the result.

f(x) ≥ sup{g(x) : g affine, g(y) ≤ f(y) ∀y ∈ Rn}

Follows by definition.
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3.2.5 Perspective of a Function

Definition. Consider a function f : Rn → R. We define the perspective of
f as gf : Rn × R>0 → R via

gf (x, t) = tf(x/t).

Proposition. If f : Rn → R is convex, then gf is convex.

Proof. It suffices to show that the epigraph of gf is convex. Note that
the epigraph of gf is the preimage of the epigraph of f over the perspective
function, hence is convex.

3.3 Convex Conjugates

Definition. Let f : Rn → R. The conjugate of f , f⋆ : Rn → R is defined
via

f⋆(y) = sup
x∈dom(f)

{yTx− f(x)}.

Geometrically, the conjugate of a function f is the greatest distance between
f and the hyperplane yTx.

Proposition. For any function f : Rn → R, the conjugate f⋆ is always
convex.

Proof. Observe that yTx−f(x) is convex in y, hence f⋆(y) = supx∈dom(f){yTx−
f(x)} is convex in y.

3.3.1 Basic Properties

Proposition (Fenchel’s Inequality). Let f : Rn → R be a function. Then,

f(x) + f⋆(y) ≥ xT y

for all x, y.

Proof. Note that

f⋆(y) ≥ xT y − f(x)
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for all x, y. The result is then immediate.

4 Convex Optimization Problems

4.1 Optimization Problems

Definition. An optimization problem is of the form

min
x

f0(x)

s.t. fi(x) ≤ 0, i = 1, . . . ,m

hi(x) = 0, i = 1, . . . , p.

Its domain is the intersection of domains for each function, i.e.

D =
m⋂
i=0

dom(fi) ∩
p⋂

i=1

dom(hi).

Definition. The feasible set of an optimization problem is the set

Ω = {x ∈ D : fi(x) ≤ 0, hi(x) = 0}.

We say that an optimization problem is feasible if its feasible set is not empty.

Definition. We define the optimal value of an optimization problem as the
value

p⋆ = inf
x∈Ω

f0(x).

If Ω = ∅, then p⋆ = ∞.

Definition. If there exists a sequence {xi}∞i=1 ⊆ Ω such that f0(xk) → −∞
as k → ∞, we say that the optimization problem is unbounded below and
p⋆ = −∞.

Definition. We say that x ∈ Ω is ϵ - suboptimal if f0(x) ≤ p⋆ + ϵ.

Definition. We say that x ∈ Ω is locally optimal if there exists some R > 0
such that f0(z) ≥ f0(x) for all z ∈ B(x,R).
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Definition. If fi(x) = 0 for some i ∈ [m] and x ∈ Ω, we say that constraint
i is active at x.

Definition. We call an optimization problem of the form

min
x

0

s.t. fi(x) ≤ 0, i = 1, . . . ,m

hi(x) = 0, i = 1, . . . , p.

a feasibility problem.

Remark. Note that maximization problem can be formulated as optimiza-
tion problems by taking −f0.

4.1.1 Slack Variables

Slack variables allow us to express inequalities as equalities.

In particular, note that

fi(x) ≤ 0 ⇐⇒ fi(x) + ξ = 0

for some ξ ≥ 0 (in particular, ξ = −fi(x)). Here, ξ is a slack variable.

More generally, we can reformulate the optimization problem

min
x

f0(x)

s.t. fi(x) ≤ 0, i = 1, . . . ,m

hi(x) = 0, i = 1, . . . , p.

as

min
x,ξ

f0(x)

s.t. fi(x) + ξi = 0, i = 1, . . . ,m

hi(x) = 0, i = 1, . . . , p

ξi ≥ 0, i = 1, . . . ,m.
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4.2 Convex Problems

Definition. A convex problem is an optimization problem of the form

min
x

f0(x)

s.t. fi(x) ≤ 0, i = 1, . . . ,m

aTi x = b, i = 1, . . . , p.

where fi is convex for all i.

Remark. The feasible set of a convex optimization problem

Ω =

m⋂
i=1

{x : fi(x) ≤ 0} ∩ dom(f0) ∩ {x : Ax = b}

is convex as it is the intersection of convex sets.

Proposition. Any local solution to a convex optimization problem is a
global solution.

Proof. Let x ∈ Ω be a local solution to the typical convex optimization
problem. Then, there exists R > 0 such that x is optimal in the R ball
around it.

Assume for the sake of contradiction that x is not locally optimal. Then,
there exists some y ∈ Ω such that f0(y) < f0(x).

We can find some θ ∈ [0, 1] such that x+ θ(y − x) ∈ B(x,R). Then,

f0 (x+ θ(y − x)) ≤ (1− θ)f0(x) + θf0(y) < f0(x),

a contradiction.

The above proposition provides some intuition as to why convex optimization
problems are particularly nice to work with.

Proposition. Let f0 ∈ C1(Ω) be a convex function. Then, x ∈ Ω is optimal
if and only if

∇f0(x)
T (y − x) ≥ 0

for all y ∈ Ω.
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Proof. First assume that x ∈ Ω is optimal. Assume for the sake of contra-
diction that ∇f0(x)

T (y − x) < 0 for some y. Define

g(t) = f(x+ t(y − x)).

Observe then that

g′(0) = ∇f0(x)
T (y − x) < 0.

Thus, for some ϵ > 0, for all c ∈ (0, ϵ), we have that g(c) < g(0), implying
that

f(x+ c(y − x)) < f(x),

a contradiction.

Now assume that

∇f0(x)
T (y − x) ≥ 0

holds for all x. We claim that x is optimal. Observe that

f(x) ≤ f(x) +∇f(x)T (y − x) ≤ f(y)

as desired.

Corollary. Consider some convex optimization problem where f0 ∈ C1(Ω).
If Ω is open and x ∈ Ω is the optimal point, then

∇f(x)T (y − x) = 0

for all y ∈ Ω.

Proof.

As Ω is open, we can find small enough θ > 0 such that y = x−θ∇f0(x) ∈ Ω.
Then,

−θ||∇f0(x)||2 = ∇f0(x)
T ((x− θ∇f0(x))− x) ≥ 0
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which is only true if the gradient is zero.

Proposition: Consider the convex optimization problem

min
x

f0(x)

s.t. Ax = b

where f0 ∈ C1(Ω). Then, a point x⋆ is an optimal point if and only if

∇f0(x
⋆) +AT v = 0

for some v, and

Ax⋆ = b.

Proof. We first prove the forwards direction. Assume that x⋆ is optimal.
Then, Ax⋆ = b trivially. Furthermore, we know that for all y ∈ Ω,

∇f0(x
⋆)T (y − x⋆) ≥ 0.

As y ∈ Ω, we know that Ay = b as well. Thus, we must have that y = x+ v
where v ∈ N (A). We may then rewrite the above as

∇f0(x
⋆)T v ≥ 0

for all v ∈ N (A).

Thus, ∇f0(x
⋆) is orthogonal to N (A), hence ∇f0(x

⋆) ∈ R(AT ). Similarly,
its negative is in the range of AT . Meaning that there must exist some v
such that

∇f0(x
⋆) +AT v = 0.

We now prove the backwards direction.

If Ax⋆ = b, then clearly x⋆ is feasible.

If

25



∇f0(x
⋆) +AT v = 0,

then ∇f0(x
⋆) ∈ R(AT ). Hence, it is orthogonal to N (A), and so

∇f0(x
⋆)T (y − x⋆) = 0

for all y ∈ Ω.

Thus, x⋆ is optimal.

4.3 Linear Problems

Definition. A linear problem (LP) is an optimization problem of the form

min
x

cTx

s.t. Ax = b

x ⪰ 0.

One may introduce inequalities in the constraints via slack variables.

4.4 Quadratic Problems

Definition. A quadratic problem (QP) is an optimization problem of the
form

min
x

1

2
xTPx+ qTx+ r

s.t. Gx ⪯ h

Ax = b,

where P ∈ Sn
+.

Definition. A quadratically constrained quadratic problem (QCQP) is an
optimization problem of the form
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min
x

1

2
xTP0x+ qT0 x+ r0

s.t.
1

2
xTPix+ qTi x+ ri ≤ 0

Ax = b,

where Pi ∈ Sn
+.

Definition. A second-order cone program (SOCP) is an optimization prob-
lem of the form

min
x

f0(x)

s.t. ||Aix+ bi||2 ≤ cTi x+ di

Fx = g.

5 Duality

5.1 Lagrange Dual Function

Definition. The Lagrangian of a (not necessarily convex) optimization prob-
lem

min
x

f0(x)

s.t. fi(x) ≤ 0, i = 1, . . . ,m

hi(x) = 0, i = 1, . . . , p.

is a function L : Rn × Rm × Rp defined via

L(x, λ, ν) = f0(x) + λT f(x) + νTh(x).

Definition: The Lagrange dual of an optimization problem is the function
g : Rm × Rp defined via

g(λ, ν) = inf
x∈D

L(x, λ, ν)

where L is the Lagrangian of the optimization problem and D is the domain
of the optimization problem (not necessarily feasible).
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Proposition. The Lagrange dual of any optimization problem is concave.

Proof. Observe that the Lagrangian is affine in λ, ν. Concavity is preserved
under point-wise infimum.

Proposition (Weak Duality). For some optimization problem, let p⋆ be its
optimal value and g(λ, ν) be its Lagrange dual. Then, for any λ ≥ 0 and
any ν,

g(λ, ν) ≤ p⋆.

Proof. Fix λ ⪰ 0 and ν. Consider some feasible x. Then,

g(λ, ν) ≤ L(x, λν)
= f0(x) + λT f(x) + νTh(x)

= f0(x) + λT f(x)

≤ f0(x)

≤ p⋆

as desired.

Definition. If (λ, ν) ∈ dom(g) and λ ⪰ 0, then we say that (λ, ν) is dual
feasible.

5.2 Lagrange Dual Problem

In light of weak duality, we can think of finding the best lower bound on
the optimal value using the Lagrange dual function. Thus is the motivation
for the Lagrange dual problem, defined below. Note that the Lagrange dual
problem is particularly nice due to the fact that the Lagrange dual function
is concave, established previously.

Definition. Let g(λ, ν) be the Lagrange dual for an optimization problem.
We define the Lagrange dual problem for the optimization problem as

max
λ,ν

g(λ, ν)

s.t. λ ⪰ 0

We call this problem the dual, and the original problem the primal.
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Remark. Let p⋆ be the optimal value for the primal problem, and d⋆ be the
optimal value to the dual problem. Then, by weak duality,

d⋆ ≤ p⋆.

There may be more implicit constraints, particularly when g is unbounded
below (recall that it is an infimum).

Definition. The optimal duality gap of a problem is the value

p⋆ − d⋆ ≥ 0.

Definition. We say that strong duality holds if

p⋆ = d⋆.

5.3 Geometric Intuition

We now build some geometric intuition regarding duality.

Fix some optimization problem and define the set

G = {(f(x), h(x), f0(x)) ∈ Rm × Rp × R|x ∈ D}.

G essentially expresses all value combinations of the constraints and objec-
tive. We now interpret many prior results, along with some new results,
using the geometry of G.

5.3.1 Optimal Value

It is easy to see that

p⋆ = inf{t : (u, v, t) ∈ G, u ≤ 0, v = 0},

i.e. we restrict the set we consider to only feasible points.

29



5.3.2 Lagrange Dual Function

We can also see that

L(x, λ, ν) = f0(x) + λT f(x) + νTh(x) = (λ, ν, 1)T (f(x), h(x), f0(x))

and

g(λ, ν) = inf
x∈D

L(x, λ, ν) = inf
x∈D

(λ, ν, 1)T (f(x), h(x), f0(x)) = inf{(λ, ν, 1)T (u, v, t)|(u, v, t) ∈ G}.

Thus, for any (u, v, t) ∈ G, we have that

(λ, ν, 1)T (u, v, t) ≥ g(λ, ν).

If the infimum in g is attained, we can think of (λ, ν, 1), g(λ, ν) as a support-
ing hyperplane to G.

5.3.3 Weak Duality

Say that λ ≥ 0. Then,

p⋆ = inf{t : (u, v, t) ∈ G, u ≤ 0, v = 0}
≥ inf{(λ, ν, 1)T (u, v, t) : (u, v, t) ∈ G, u ≤ 0, v = 0}
≥ inf{(λ, ν, 1)T (u, v, t) : (u, v, t) ∈ G}
≥ g(λ, ν).

Thus, for any λ, ν where λ ≥ 0, we have that p⋆ ≥ g(λ, ν). As d⋆ is the
maximum value of g(λ, ν) over all λ, ν where λ ≥ 0, we thus have that

p⋆ ≥ d⋆,

proving weak duality.
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5.3.4 Epigraph Variation

Define

A = {(u, v, t)|∃x ∈ D, fi(x) ≤ ui, hi(x) = vi, f0(x) ≤ t}.

A can be thought of as sort of an epigraph of G, with the exception that we
enforce equality on the equality constraints h.

Once again, the optimal value can be expressed as

p⋆ = inf{t : (0, 0, t) ∈ A}.

For λ ≥ 0, note that

g(λ, ν) = inf{(λ, ν, 1)T (u, v, t)|(u, v, t) ∈ G} = inf{(λ, ν, 1)T (u, v, t)|(u, v, t) ∈ A},

as G is a subset of A, but points in A do not decrease the value of (λ, ν, 1)T (u, v, t).

Once again, we may say that if the infimum is attained, then (λ, ν, 1), g(λ, ν)
is a supporting hyperplane to A since for all x ∈ A, we have

(λ, ν, 1)Tx ≥ g(λ, ν).

Note that (0, 0, p⋆) is in the boundary of A, hence

p⋆ = (λ, ν, 1)T (0, 0, p⋆) ≥ g(λ, ν)

once again gives us weak duality.

5.3.5 Slater’s Condition

Proposition (Slater’s Condition). If there exists an "interior" to the in-
equality constraints of a convex optimization problem, i.e.

∃x fi(x) < 0 ∀i = 1, . . . ,m

and x is feasible, then strong duality holds.
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Proof. We will use the geometric interpretation of duality to prove Slater’s
condition.

First note that strong duality holds if and only if

p⋆ = (λ, ν, 1)T (0, 0, p⋆) = g(λ, ν)

for some λ, ν. In other words, there exists a supporting hyperplane (λ, ν, 1), g(λ, ν)
to A (defined above) with λ ≥ 0 tangent to (0, 0, p⋆).

The idea behind the proof is that we will separate A from the set

B = {(0, 0, s) ∈ Rm × Rp × R|s < p⋆}

with a hyperplane that proves strong duality.

In doing so, we will make the following simplifying assumptions: int(D) ̸= ∅,
rank(A) = p, and p⋆ > −∞ (otherwise d⋆ = −∞ = p⋆ by weak duality).

Note that as we are only considering a convex optimization problem, A is
convex as it is the Cartesian product of convex sets.

Furthermore, see that

A ∩B = ∅

since p⋆ is optimal.

As A,B are convex and disjoint, we can separate them. More precisely, there
exists (λ, ν, µ) ̸= 0, α such that

(λ, ν, µ)T (u, v, t) ≥ α (u, v, t) ∈ A

and

(λ, ν, µ)T (0, 0, s) ≤ α (0, 0, s) ∈ B.

From the first inequality, note that λ ⪰ 0, u ≥ 0, otherwise we could scale
the left-hand side to negative infinity.

We can rewrite the last inequality as
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µs ≤ α s < p⋆,

meaning that

µp⋆ ≤ α.

Thus,

m∑
i=1

λiui +

p∑
i=1

νivi + µt = λTu+ νT v + µT t

= (λ, ν, µ)T (u, v, t)

≥ α

≥ µp⋆.

For now, assume that µ > 0. We will address the µ = 0 case later.

Dividing both sides by µ, we have that

L(x, λ/µ, ν/µ) ≥ p⋆

for all x (recall that (u, v, t) was an arbitrary element of A).

We can then minimize x over the left-hand side to recover

g(λ/µ, ν/µ) ≥ p⋆.

Weak duality, however, grants us

g(λ/µ, ν/µ) = p⋆.

Hence, when µ > 0, we have strong duality.

We now consider the µ = 0 case. Then,
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m∑
i=1

λiui +

p∑
i=1

νivi =
m∑
i=1

λiui +

p∑
i=1

νivi + µt

= (λ, ν, µ)T (u, v, t)

≥ α

≥ µp⋆

= 0

As (u, v, t) is an arbitrary element of A, we have that for all x ∈ D,

m∑
i=1

λifi(x) + νT (Ax− b) ≥ 0.

Then let x be a Slater point. Plugging this x into the above inequality, we
have that

m∑
i=1

λifi(x) ≥ 0,

but fi(x) < 0 for all i. Hence, λi ≤ 0. But, λ ⪰ 0, thus λ = 0.

Returning to the original inequality, we have that for all x ∈ D,

νT (Ax− b) ≥ 0.

Note that ν ̸= 0 as (λ, ν, µ) ̸= 0 but λ, µ = 0.

Let x once again be the Slater point. Then, we have that ν ̸= 0 but

νT (Ax− b) = 0.

As x is in the interior, there must exist some other point y ∈ D such that

νT (Ay − b) < 0

unless νTA = 0. But, we stated that rank(A) = p, hence we have a contra-
diction. Thus, µ ̸= 0 and strong duality holds by the other case.
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5.4 Optimality Conditions

5.4.1 Certificate of Suboptimality

The dual function provides us with a method to "certify" the suboptimality
of a solution. In particular, say that we are given a solution x to some
optimization problem and wish to provide a guarantee on how suboptimal it
is. We can use a dual solution (λ, ν) as our certificate. By weak duality, we
have that

g(λ, ν) ≤ p⋆ ≤ f0(x).

Hence,

f0(x)− p⋆ ≤ f0(x)− g(λ, ν).

Thus, our certificate tells us that the suboptimality is at most

f0(x)− g(λ, ν),

which is typically called the duality gap.

5.4.2 Complementary Slackness

Proposition (Complementary Slackness). Consider some optimization prob-
lem in which strong duality holds. Let x⋆ be primal optimal and (λ⋆, ν⋆) be
dual optimal. Then for all i = 1, . . . ,m,

λ⋆
i fi(x

⋆) = 0.

Proof. Observe that

f0(x
⋆) = g(λ⋆, ν⋆)

= inf
x∈D

{f0(x) + λ⋆T f(x) + ν⋆Th(x)}

≤ f0(x
⋆) + λ⋆T f(x⋆) + ν⋆Th(x⋆)

= f0(x
⋆) + λ⋆T f(x⋆)

≤ f0(x
⋆),
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meaning that

f0(x
⋆) + λ⋆T f(x⋆) = f0(x

⋆),

i.e.

m∑
i=1

λ⋆
i fi(x

⋆) = 0.

As λ⋆ ⪰ 0 and fi(x
⋆) ≤ 0, we immediately recover complementary slackness.

One can also see from the equalities that x⋆ is the minimizer to L(x, λ⋆, ν⋆).

5.4.3 KKT Conditions

Definition. Consider an optimization problem in which f0, f1, . . . , fm, h1, h2, . . . , hp
are differentiable and strong duality holds. The KKT conditions for primal
solution x and dual solutions (λ, ν) refer to the following conditions:

• x is primal feasible.

• (λ, ν) is dual feasible.

• λifi(x) = 0 for all i = 1, . . . ,m.

• ∇xL(x, λ, ν) = 0.

Proposition. Consider an optimization problem with the above conditions.
Furthermore, let x⋆ be an optimal primal solution and (λ⋆, ν⋆) be an optimal
dual solution. Then, these optimal points satisfy the KKT conditions.

Proof. It is clear that x⋆ is primal feasible and (λ⋆, ν⋆) is dual feasible.
Complementary slackness holds from earlier. Furthermore, see that

inf
x∈D

L(x, λ⋆, ν⋆) = L(x⋆, λ⋆, ν⋆)

meaning that

∇xL(x⋆, λ⋆, ν⋆) = 0,

as desired.
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Proposition. Consider a convex optimization problem with differentiable
functions. Furthermore, let x, (λ, ν) be points that satisfy the KKT condi-
tions. Then, x is primal optimal, (λ, ν) is dual optimal, and strong duality
holds.

Proof. Clearly, x is primal feasible and (λ, ν) is dual feasible by the KKT
conditions. We now show optimality.

As we are considering a convex optimization problem, see that L(x, λ, ν) is
convex in x. Hence, if the gradient vanishes for any x, that x must be a
global minimizer. Implying that

g(λ, ν) = L(x, λ, ν) = f0(x) +
m∑
i=1

λifi(x) +

p∑
i=1

νihi(x) = f0(x)

by invoking complementary slackness.

As the point has the dual equal to the primal, there is zero optimality gap,
implying that x is primal optimal and (λ, ν) is dual feasible. Furthermore,
strong duality holds.

6 Unconstrained Minimization

We now discuss methods to solve unconstrained minimization problems, i.e.
problems of the form

min
x∈Rn

f(x)

where f is convex and twice differentiable.

As we are in the unconstrained setting, a point x⋆ is optimal if and only
∇f(x⋆) = 0. There are typically no analytical solutions. Hence, the general
idea of these algorithms is to iteratively solve for such a point, i.e. find a
sequence {x(k)}nk=1 such that ∇f(x(k)) → 0 and consequently f(x(k)) → p⋆.

6.1 Strong Convexity

Definition. We say that a function f is strongly convex on S if there exists
m > 0 such that
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∇2f(x) ⪰ mI,

which means that ∇2f(x) − mI ⪰ 0. We also say that f is m strongly
convex.

Proposition. Let f be an m strongly convex function on S. Then, for all
x, y ∈ S,

f(y) ≥ f(x) +∇f(x)T (y − x) +
m

2
||y − x||22,

i.e. we have stronger guarantees on the first-order characterization of con-
vexity.

Proof. By Taylor’s and mean value theorem, there exists some z on the line
segment [x, y] such that

f(y) = f(x) +∇f(x)T (y − x) +
1

2
(y − x)T∇2f(z)(y − x).

By m strong convexity,

f(y) ≥ f(x)+∇f(x)T (y−x)+
m

2
(y−x)T (y−x) = f(x)+∇f(x)T (y−x)+

m

2
||y−x||22,

as desired.

Proposition. Let f be an m strongly convex function on S and p⋆ the
minimum value of f . Then for any x ∈ S,

p⋆ ≥ f(x)− m

2
||∇f(x)||22.

In words, one can bound the suboptimality of a point using its gradient.

Proof. We know that for all y ∈ S,

f(y) ≥ f(x) +∇f(x)T (y − x) +
m

2
||y − x||22.

We will find ỹ that minimizes the right-hand side, and we have that it serves
as a lower-bound for any y on the left-hand side.
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The right-hand side is a convex function in y, hence we take the gradient
and solve for 0:

∇f(x) +m(ỹ − x) = 0 =⇒ ỹ = x− 1

m
∇f(x).

Plugging this in,

f(y) ≥ f(x)− 1

m
||∇f(x)||22 +

1

2m
||∇f(x)||22 = f(x)− 1

2m
||∇f(x)||22.

This holds for any y ∈ S, hence we set y = x⋆ and see that

p⋆ ≥ f(x)− 1

2m
||∇f(x)||22

as desired.

Corollary. Let f be an m strongly convex function on S and p⋆ the mini-
mum value of f . Then for any x ∈ S, if

||∇f(x)||22 ≤ (2mϵ)1/2,

we have that

f(x)− p⋆ ≤ ϵ.

We can also bound a point’s distance from the minimizer using the gradient.

Proposition. Let f be an m strongly convex function on S and x⋆ the
minimizer of f . Then for any x ∈ S,

||x⋆ − x|| ≤ 2

m
||∇f(x)||2.

Proof. By the first-order characterization of m strong convexity,

p⋆ ≥ f(x)+∇f(x)T (x⋆−x)+
m

2
||x⋆−x||22 ≥ f(x)−||∇f(x)||2||x⋆−x||2+

m

2
||x⋆−x||22
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via Cauchy Schwarz.

As p⋆ ≤ f(x),

0 ≥ −||∇f(x)||2||x⋆ − x||2 +
m

2
||x⋆ − x||22

hence

||∇f(x)||2||x⋆ − x|| ≥ m

2
||x⋆ − x||22

meaning that

2

m
||∇f(x)||2 ≥ ||x⋆ − x||2

as desired.

6.1.1 Smoothness

Strong convexity imposes a lower bound on the Hessian of a function. We
can similarly impose an upper bound.

Definition. We say that a function f is M smooth on S if

∇2f(x) ≤ MI

for all x ∈ S.

Proposition. Let f be an M smooth function. Then for all x, y ∈ S,

f(y) ≤ f(x) +∇f(x)T (y − x) +
M

2
||y − x||22.

Proof. Once again by Taylor’s and mean value theorem, we have that

f(y) = f(x) +∇f(x)T (y − x) +
1

2
(y − x)T∇2f(z)(y − x)

for some z on the line segment [x, y].

By M smoothness, we then have that

40



f(y) ≤ f(x) +∇f(x)T (y − x) +
M

2
||y − x||22.

Proposition. Let f be an M smooth function with optimal value p⋆. Then
for any x ∈ S,

p⋆ ≤ f(x)− 1

2M
||∇f(x)||22.

Proof. We will employ a similar strategy as in the convexity case, with some
changes. We know that for all y ∈ S,

f(y) ≤ f(x) +∇f(x)T (y − x) +
M

2
||y − x||22.

We first find ỹ which minimizes the right-hand side. From before, we found
that

ỹ = x− 1

m
∇f(x).

Plugging this in,

p⋆ ≤ f(ỹ) ≤ f(x)− 1

2M
||∇f(x)||22.

6.2 Conditioning

Definition (Condition Number). Consider an unconstrained optimization
problem with an objective that is m strongly convex and M smooth. We
call K = M/m the condition number of the problem.

Definition (Width). We define the width of a set C in direction q with
unit-norm as

W (C, q) = sup
z∈C

qT z − inf
z∈C

qT z.

Definition. We define the maximum width of a set C as
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Wmax = sup
q,||q||2=1

W (C, q).

We define the minimum width of a set C as

Wmin = inf
q,||q||2=1

W (C, q).

Definition. The condition number of a set C is

cond(C) =
W 2

max

W 2
min

.

Definition. The α sublevel set of f is the set

Cα = {x : f(x) ≤ α}.

Proposition. Consider a function that is m strongly convex and M smooth.
Then, for any α,

cond(Cα) ≤ K = M/m.

Proof. Observe that by the first-order characterizations,

p⋆ +
m

2
||y − x⋆||22 ≤ f(y) ≤ p⋆ +

M

2
||y − x⋆||22.

Hence, defining

Binner = {y|||y − x⋆||2 ≤ (2(α− p⋆)/M)1/2}

and

Bouter = {y|||y − x⋆||2 ≤ (2(α− p⋆)/m)1/2}

we have that
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Binner ⊆ Cα ⊆ Bouter.

Dividing the squared radii of the balls, we have an upper-bound on the
condition number of Cα:

cond(Cα) ≤
M

m

as desired.

6.3 Descent Methods

Descent methods are algorithms that solve unconstrained minimization prob-
lems by iteratively computing a direction to perturb the current solution,
and the scale of said direction. Formally, on iteration k+1, they update the
current solution via

x(k+1) = x(k) + t(k)∆x(k)

where t(k) > 0. t(k) and ∆x(k) are chosen such that f(x(k+1)) < f(x(k)), i.e.
we gradually aproach the optimal solution.

Note that by the first-order characterization of convexity, we require that

∇f(x(k))T∆x(k) < 0,

otherwise there is no hope of finding a more optimal solution.

How the direction ∆x(k) is computed depends on the specific algorithm.
Several methods exist to compute t(k), some of which are covered below.

6.3.1 Exact Line Search

Simply set t(k) such that the objective is minimized:

t(k) = argmin
s>0

f(x(k) + s∆x(k)).

While it is true that we must solve another optimization problem, this prob-
lem is one-dimensional and in practice is very easy to solve.
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6.3.2 Backtracking

A simplified backtracking algorithm to compute t would be to initially set
t(k) to 1, then while f(x(k) + t(k)∆x(k)) > f(x(k)), halve t(k).

6.4 Gradient Descent

Gradient descent provides one natural option to choose the descent direction:
the negative of the gradient. Until the stopping criterion is satisfied (e.g. the
current gradient is small enough), we update the current solution via

x(k+1) = x(k) − t(k)∇f(x(k))

where t(k) is computed by either exact line search or backtracking.

Proposition. Consider some unconstrained minimization problem over f ,
where f is m strongly convex and M smooth. If we were to perform gradient
descent with exact line search beginning at x(0), we would reach an ϵ optimal
solution at step N where

N ≤ log((f(x0)− p⋆)/ϵ)

log(1/c)
,

note that c = 1−m/M .

Proof. By M smoothness and the first-order characterization, we have that

f(x− t∇f(x)) ≤ f(x)− t||∇f(x)||22 +
Mt2

2
||∇f(x)||22.

As we use exact line search, we can improve our bound by finding t that
minimizes the right-hand side, which is convex. We take the gradient with
respect to t and set it to 0:

0 = −||∇f(x)||22 +Mt||∇f(x)||22 =⇒ t =
1

M
.

Substituting this in,

f(x− t∇f(x)) ≤ f(x)− ||∇f(x)||22
M

+
||∇f(x)||22

2M
≤ f(x)− ||∇f(x)||22

2M
.
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Hence,

f(x− t∇f(x))− p⋆ ≤ (f(x)− p⋆)− ||∇f(x)||22
2M

,

i.e. we always improve our optimality gap by

1

2M
||∇f(x)||22.

Recall that with m strong convexity, the gradient provides us with a bound
on our suboptimality:

f(x)− p⋆ ≤ 1

2m
||∇f(x)||22.

Hence, we can restate our bound as

f(x− t∇f(x))− p⋆ ≤ (f(x)− p⋆)− m

M
(f(x)− p⋆) = c(f(x)− p⋆).

By induction,

f(x(k))− p⋆ ≤ ck(f(x(0))− p⋆).

To have that f(x(k) − p⋆) ≤ ϵ, it is sufficient to have

ck ≤ ϵ

f(x(0))− p⋆

meaning that it is sufficient for

k ≤
log

(
ϵ

f(x(0))− p⋆

)
log(c)

=
log
(
(f(x(0))− p⋆)/ϵ

)
log(1/c)

as desired.
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